\qquad

The Trigonometric Identities

Locate the Pythagorean identities on the "Trigonometric Identities" worksheet.

We will change a trigonometric function in terms of another for simplifying equations in calculus. Besides, algebra and substitution is just plain fun.

Side note: $\sin ^{2} t=(\sin t)^{2}$ it is almost always written the first way since the second version might make some people think that they were squaring the angle if the parentheses were missing.

Example 1

Directions: Write $\cos t$ in terms of $\sin t$ in quadrant IV. The function that follows the phrase "in terms of" becomes the independent variable so to speak. That means we solve for $\cos t$ (get $\cos t$ by itself).
$1^{\text {st }}$ start with an identity that has both functions

$$
\sin ^{2} t+\cos ^{2} t=1
$$

$2^{\text {nd }}$ complete the algebra to get cosine by itself, subtract $\sin ^{2} t$ from both sides and then square root.

$$
\cos t= \pm \sqrt{1-\sin ^{2} t}
$$

$3^{\text {rd }}$ consider the function in the given quadrant, $\cos t=\frac{x}{r}$, is positive in quadrant IV, so
$\cos t=+\sqrt{1-\sin ^{2} t}$
This shows cosine in terms of sine.

Example 2

Write $\csc ^{2} t * \cos ^{2} t$ in terms of $\sin \mathrm{t}$

Replace $\csc t$ with $\frac{1}{\sin t}$

$$
\begin{aligned}
& \csc ^{2} t * \cos ^{2} t \\
& \left(\frac{1}{\sin t}\right)^{2} * \cos ^{2} t
\end{aligned}
$$

We also know how to write $\cos t$ in terms of $\sin t$
From the $\sin ^{2} t+\cos ^{2} t=1$ identity above We'll use this one a lot

$$
\left(\frac{1}{\sin t}\right)^{2} *\left(1-\sin ^{2} t\right)
$$

It's all in terms of sine! Wahoo!

Write the first expression "in terms of" the second, where t is a terminal point in the given quadrant.

1. $\sin t, \cos t ; t$ is in quadrant II
2. $\tan t, \sin t ; t$ is in quadrant IV
3. $\tan t, \cos t ; t$ is in quadrant III
4. $\sec t, \tan t ; t$ is in quadrant II
5. $\tan t, \sec t ; t$ is in quadrant III
6. $\sin t, \sec t ; t$ is in quadrant IV
7. $\tan ^{2} t, \sec t ; t$ is in any quadrant
8. $\sec ^{2} t \sin ^{2} t, \cos t ; t$ is in any quadrant
9. $\csc t, \cot t ; t$ is in quadrant III
