

1-85. See below.

a. Yes. It has four sides. $m_{A B}=m_{C D}=\frac{1}{2}$ and $m_{B C}=m_{A D}=-2$, so each pair of consecutive sides is perpendicular and forms 90° angles.
b. $A^{\prime}(4,3) B^{\prime}(6,-1), C^{\prime}(-2,-5), D^{\prime}(-4,-1)$

1-86. See below.

a. $x=-4.75$
b. $x=-94$
c. $x \approx 1.14$
d. $a=22$

1-87. See below.

a. There are 10 combinations: $\mathrm{a} \& \mathrm{~b}, \mathrm{a} \& \mathrm{c}, \mathrm{a} \& \mathrm{~d}, \mathrm{a} \& \mathrm{e}, \mathrm{b} \& \mathrm{c}, \mathrm{b} \& \mathrm{~d}, \mathrm{~b} \& \mathrm{e}, \mathrm{c} \& \mathrm{~d}, \mathrm{c} \& \mathrm{e}, \mathrm{d} \&$ e
b. Yes. If the outcomes are equally likely, we can use the theoretical probability computation in the Math Notes box in Lesson 1.2.1.
c. $\frac{3}{10}$
d. $\frac{9}{10}$
e. The outcomes that satisfy part (d) include the outcomes that satisfy part (c), but there are others on the part (d) list as well.

1-88. See below.

a. $y={ }^{\frac{4}{3}} x-2$
b. The resulting line coincides with the original line; $y={ }^{\frac{4}{3}} x-2$
c. The image is parallel; $y={ }^{\frac{4}{3}} x-7$
d. They are parallel, because they all have a slope of ${ }^{\frac{4}{3}}$.
e. $y=-\frac{3}{4} x+16$

1-89. See below.

a. -14

