

3-53. See below.

a. Yes, since all trees are green and the oak is a tree.
b. No, only trees must be green according to the statement.
c. No, the second statement reverses the first.

3-54. See below.

a. Yes, AA ~. Dilate from right vertex.
b. Yes, AA \sim since all angles are 60°. Translation and dilation.
c. Yes, zoom factor of 2.5 ; translate so that one pair of corresponding vertices coincide, rotate so that rays coincide, and dilate.
d. No, since corresponding angles are not equal. Note that you can't apply zoom factor to angles.

3-55. See below.

a. One strategy: Translate one so that the centers coincide. Then dilate so that the radius is the same as the other circle.
b. Students may come up with equilateral triangles, which from part (b) of problem 3-54 were similar because they have equal angle measures. Squares or other regular polygons are also always similar.

3-56. See below.

a. There are 12 combinations. One way to systematically list them all is to list a bus number (such as 41) and then match it with each possible activity. This can be repeated for each of the possible bus numbers.
b. i. $\frac{9}{12}$, ii. $\frac{8}{12}$, iii. $\frac{1}{12}$
c. No, each activity is equally likely regardless of which bus she takes.

3-57. See graph below. Perimeter $=44.9$ units; Area $=94$ square units

3-58. See below.

a. $A B C D \sim E V O L$
b. RIGHT ~RONGW
c. One possible answer: $\triangle T A C \sim \triangle G D O$

