3-76. See below.

a. $(5,-2)$
b. $(-4,2)$
c. $(3,3)$ It is the center of the figure, or the midpoint of each diagonal.

3-77. See below.

a. $y=\frac{1}{2} x+2$
b. $A=4$ sq. units; $P=6+\sqrt{20} \approx 10.47$ units
c. $y=-2 x+2$

3-78. See below.

a. $x=51^{\circ}$ alternate interior angles and Triangle Sum Theorem
b. $x=43^{\circ}$ circle has 360°
c. $x=1$ Pythagorean Thm

3-79. See below.
a. See tree diagram to the right.
b. Yes
c. $\frac{1}{6}, \frac{3}{6}$
d. $\frac{\frac{1}{2}}{2}$, no-the spinners are independent

e. $\frac{\frac{2}{6}}{6}$, because now the possible outcomes are $\$ 100, \$ 200, \$ 1500, \$ 200, \$ 400$, and $\$ 3000$.

3-80. See below.

a. $n=32$
b. $m \approx 14.91$

3-81. Missing side length of first rectangle must be 4 m because the perimeter is 26 m . Missing side length of second rectangle must be 9 " because the area is 36 sq . in. Since angles are equal and ratios of corresponding side lengths are equal, therefore, the rectangles are similar. In fact, they are congruent because $r=1$.

