3-88. See below.

a. Scalene triangle
b. Isosceles triangle
c. Not possible
d. Equilateral triangle

3-89. See below.

a. The two equations should have the same slope but a different y-intercept. This forces the lines to be parallel and not intersect.
b. When solving a system of equations that has no solution, the equations combine to create an impossible equality, such as $3=0$. However, if students claim that " x and y disappear" when combining the two equations, you may want to point out that another special case occurs when the resulting equality is always true, such as $2=2$. This is the result when the two lines coincide, creating infinite points of intersection.

3-90. See below.

a. Not similar, interior angles are all different.
b. Must be similar by AA ~.
c. Similar, all side lengths have the same ratio.

3-91. Perimeter $=10+10+4+3+4+3+4=38$ units, height of triangle $=8$ units, area $=60$ square units.

3-92. The reasoning is correct.

3-93. See below.

a. $3(4 x-12)=180^{\circ}, x=18$
b. $4.9^{2}-3.1^{2}=x^{2}, x \approx 3.79$
c. $x+\left(180^{\circ}-51^{\circ}-103^{\circ}\right)+82^{\circ}=180^{\circ}, x=72^{\circ}$
d. $3 x-2=2 x+9, x=11$

