3-99. See below.

- a. SSS ~ and SAS ~ (if students show that the triangles are right triangles)
- b. $AA \sim and SAS \sim$
- c. None, since there is not enough information.

3-100. See below.

a.
$$\frac{24}{40} = 60\%$$

b.
$$\frac{18}{x} = \frac{3}{10}, x = 60$$

3-101. See below.

a.
$$12x^2 - 7x - 10$$

b.
$$16x^2 - 8x + 1$$

c.
$$x = -\frac{5}{9}$$

d.
$$x = 3$$

3-102. $\angle y = 48^{\circ}$ because of vertical angles; $\angle z = 48^{\circ}$ because of reflection of $\angle y$ or because of angle of incidence = angle of reflection with $\angle x$.

3-103. See below.

a.
$$-\frac{5}{6}$$

b.
$$LD = \sqrt{61} \approx 7.81 \text{ units}$$

c. Calculate Δx and Δy by determining the difference in the corresponding coordinates.

3-104. Original: A = 135 sq. units, P = 48 units; New: A = 15 sq. units, P = 16 units