4-110. See below.

a. $\frac{1}{12}$
b. Intersection
c. No. $\mathrm{P}($ yellow $)=\frac{1}{6}$
d. $\frac{2}{3}$
e. You cannot move $\frac{1}{6}+\frac{1}{6}+{ }^{\frac{1}{3}}=\frac{2}{3}$ or you move ${ }^{\frac{1}{3}}$ of the time and $1-\frac{1}{3}=\frac{2}{3}$.

4-111. See below.

a. $y=3$
b. $y=9$

4-112. It assumes that everyone who likes bananas is a monkey.
4-113. ≈ 1469.27 feet
4-114. $6 ">x<14 "$
4-115. Methods vary: $\theta=68^{\circ}$ (could be found using corresponding and supplementary angles), $\alpha=85^{\circ}$ (could be found using corresponding angles since lines are parallel).

4-116. See below.

a. $P(K)=\frac{4}{52}, P(Q)=\frac{4}{52}, P(C)=\frac{13}{52}$
b. $\frac{16}{52}$; You can add the probabilities of king and club, but you need to subtract the number of cards that are both kings and clubs (1). $P(\mathrm{~K}$ or C$)=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{16}{52}$
c. $P(\mathrm{~K}$ or Q$)=\frac{8}{52}=\frac{2}{13}$. There is no overlap in the events so you can just add the probabilities.
d. $P($ not a face card $)=1-\frac{12}{52}=\frac{40}{52}$

4-117. ≈ 26 years

4-118. See below.

a. Yes, $\triangle A B D \sim \triangle E B C$ by $A A \sim$.
b. Yes. Since $D B=9$ units (by the Pythagorean Thm), the common ratio is 1 .

4-119. $L E=M S$ and $L I=E S=M I$
4-120. $\mathrm{AB} \approx 11.47 \mathrm{~mm}, \mathrm{~A} \approx 97.47$ sq. mm

4-121. See below.

a. $A^{\prime}(-3,-3), B^{\prime}(9,-3), C^{\prime}(-3,-6)$
b. $A^{\prime \prime}(-3,3), B^{\prime \prime}(-3,-9), C^{\prime \prime}(-6,3)$
c. $(9,3)$

