

4-110. See below.

- a. $\frac{1}{12}$
- b. Intersection
- c. No. P(yellow) = $\frac{1}{6}$
- d. $\frac{2}{3}$
- e. You cannot move $\frac{1}{6} + \frac{1}{6} + \frac{1}{3} = \frac{2}{3}$ or you move $\frac{1}{3}$ of the time and $1 \frac{1}{3} = \frac{2}{3}$.

4-111. See below.

a.
$$y = 3$$

b.
$$y = 9$$

- **4-112.** It assumes that everyone who likes bananas is a monkey.
- **4-113.** ≈ 1469.27 feet
- **4-114.** 6" < *x* < 14"
- **4-115.** Methods vary: $\theta = 68^{\circ}$ (could be found using corresponding and supplementary angles), $\alpha = 85^{\circ}$ (could be found using corresponding angles since lines are parallel).

4-116. See below.

a.
$$P(K) = \frac{4}{52}$$
, $P(Q) = \frac{4}{52}$, $P(C) = \frac{13}{52}$

- b. $\frac{16}{52}$; You can add the probabilities of king and club, but you need to subtract the number of cards that are both kings and clubs (1). $P(K \text{ or } C) = \frac{4}{52} + \frac{13}{52} \frac{1}{52} = \frac{16}{52}$
- c. $P(K \text{ or } Q) = \frac{8}{52} = \frac{2}{13}$. There is no overlap in the events so you can just add the probabilities.
- d. $P(\text{not a face card}) = 1 \frac{12}{52} = \frac{40}{52}$

4-117. \approx 26 years

4-118. See below.

- a. Yes, $\triangle ABD \sim \triangle EBC$ by AA ~.
- b. Yes. Since DB = 9 units (by the Pythagorean Thm), the common ratio is 1.

4-119.
$$LE = MS$$
 and $LI = ES = MI$

4-120. AB
$$\approx 11.47$$
 mm, A ≈ 97.47 sq. mm

4-121. See below.

a.
$$A'(-3, -3), B'(9, -3), C'(-3, -6)$$

b.
$$A''(-3, 3), B''(-3, -9), C''(-6, 3)$$

c.
$$(9,3)$$