6-46. Justifications and order may vary: $a = 53^{\circ}$, given; $b = 55^{\circ}$, straight angle (with $\angle g$); $c = 72^{\circ}$, triangle angle sum; $d = 53^{\circ}$, when lines are parallel, alternate interior angles are equal; $e = 55^{\circ}$, when lines are parallel, alternate interior angles are equal; $f = 127^{\circ}$, straight angle (with $\angle a$), so they are supplementary.

6-47. See below.

a. For left-hand triangle: $c^2 = 9 + 36 - 2 \cdot 3 \cdot 6 \cos 60^\circ$, $c = 3\sqrt{3} \approx 5.196$ units; For right-hand triangle: $c^2 = 36 + 27 - 2 \cdot 6 \cdot 3\sqrt{3} \cos 30^\circ$, c = 3 units; They are congruent.

b. Yes; by SSS \cong or SAS \cong .

6-48. See below.

- a. Converse: If the ground is wet, then it is raining. Not always true.
- b. Converse: If a polygon is a rectangle, then it is a square. Not always true.
- c. Converse: If a polygon has four 90° angles, then it is a rectangle. Not always true.
- d. Converse: If a polygon is a triangle, then it has three angles. Always true.
- e. Converse: If vertical angles are congruent, then two lines intersect. Always true.

6-49. x-intercept: (4, 0), y-intercept: (0, 6)

6-50. See below.

a. $y = \frac{13}{4}$ b. y = -2c. $4^{\frac{2}{3}}$ " d. $x = \frac{8}{3}$ 6-51. See below. a. $\frac{3}{8}$

b. $\frac{1}{8}$ c. $\frac{3}{8}$ d. $\frac{1}{8}$; sum must be equal to one.

6-52. sin $40^{\circ} = \frac{h}{600}$, $h \approx 385.67$ feet