\qquad

Rules of Logarithms

Rules of Logarithms

If M, N, and a are positive real numbers with $a \neq 1$, and x is any real number, then

1. $\log _{a} M N=\log _{a} M+\log _{a} N$ Product Rule
2. $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N \quad$ Quotient Rule
3. $\log _{a} M^{N}=N \log _{a} M \quad$ Power Rule
4. $\log _{a} a=1$
5. $\log _{a} 1=0$
6. $\log _{a} a^{x}=x \quad \ln e^{x}=x$
7. $a^{\log _{a} x}=x \quad e^{\ln x}=x$
8. $\log _{a} \frac{1}{N}=-\log _{a} N$

Change of Base Formula

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}=\frac{\log M}{\underset{\text { Base } 10}{\log a}}
$$

1. Rewrite $\log (31)+\log (18)$ as a single logarithm.
2. Express $\log _{c}(4)-\log _{c}(3)$ as a single logarithm.
3. Simplify: $\log _{3}(x+3)+\log _{3}(x+9)$
4. Simplify: $\log _{a}\left(x^{2}-25\right)-\log _{a}(x-5)$

Rules of Logarithms

5. Express $\log \left(\frac{q}{10}\right)$ as a difference of logarithms.
6. Express $\ln (x y)$ as a sum of logarithms.
7. Rewrite $\log (16)$ in terms of $\log (4)$.
8. Rewrite $\log \sqrt{1600}$ in terms of $\log (2)$ and $\log (5)$.
9. Simplify $2^{\log _{2}(2 x+5)}$
10. Simplify $\ln \left(e^{2 x}\right)$
11. Simplify $e^{\ln (3 x+9)}$
12. Rewrite $\log _{b}\left(x^{8} y^{3} z\right)$ as a sum or difference of multiple of logarithms.
13. Express $\log \left(\frac{31}{3 x}\right)$ as a difference of logarithms.
14. Rewrite $2 \log _{c} x-\frac{1}{2} \log _{c} y$ as a single logarithm and simplify if possible.
15. Find an approximate rational solution to the equation $2^{x}=7$. Round your answer to 4 decimal places.

Rules of Logarithms

16. Find the $\log _{5} 80$ using the Change of Base formula. Round to 4 decimal places.
17. Solve $1.04^{2 x}=3$. Round your answer to 4 decimal places.
18. Solve $\log _{x} 64=-3$
19. If $\$ 50,000$ is invested at 10% compounded quarterly, how long will it take for the investment to triple in value? (Leave your answer in years, rounding to two decimal places.)
