Rules of Logarithms

If M, N, and a are positive real numbers with $a \neq 1$, and x is any real number, then 1. $\log_a MN = \log_a M + \log_a N$ Product Rule 2. $\log_a \frac{M}{N} = \log_a M - \log_a N$ Quotient Rule 3. $\log_a M^N = N \log_a M$ Power Rule 4. $\log_a a = 1$ 5. $\log_a 1 = 0$ 6. $\log_a a^x = x$ $\ln e^x = x$ 7. $a^{\log_a x} = x$ $e^{\ln x} = x$ 8. $\log_a \frac{1}{N} = -\log_a N$ Change of Base Formula $\log_a M = \frac{\log_b M}{\log_b a} = \frac{\log M}{\log a}$ Base 10

- 1. Rewrite log(31) + log(18) as a single logarithm.
- 2. Express $\log_c(4) \log_c(3)$ as a single logarithm.
- 3. Simplify: $\log_3(x+3) + \log_3(x+9)$
- 4. Simplify: $\log_a (x^2 25) \log_a (x 5)$

- 5. Express $\log\left(\frac{q}{10}\right)$ as a difference of logarithms.
- 6. Express $\ln(xy)$ as a sum of logarithms.

7. Rewrite $\log(16)$ in terms of $\log(4)$.

8. Rewrite $\log \sqrt{1600}$ in terms of log(2) and log(5).

9. Simplify $2^{\log_2(2x+5)}$

^{10.} Simplify $\ln(e^{2x})$

^{11.} Simplify
$$e^{\ln(3x+9)}$$

12. Rewrite $\log_b(x^8y^3z)$ as a sum or difference of multiple of logarithms.

13. Express $\log\left(\frac{31}{3x}\right)$ as a difference of logarithms.

14. Rewrite $2\log_c x - \frac{1}{2}\log_c y$ as a single logarithm and simplify if possible.

15. Find an approximate rational solution to the equation $2^x = 7$. Round your answer to 4 decimal places. 16. Find the $\log_5 80$ using the Change of Base formula. Round to 4 decimal places.

17. Solve $1.04^{2x} = 3$. Round your answer to 4 decimal places.

18. Solve $\log_x 64 = -3$

19. If \$50,000 is invested at 10% compounded quarterly, how long will it take for the investment to triple in value? (Leave your answer in years, rounding to two decimal places.)