Vertical Angles

∠1 and ∠3 are vertical angles ∠2 and ∠4 are vertical angles Vertical angles are congruent.

Straight Angles

 $\angle 1$ and $\angle 2$, $\angle 3$ and $\angle 4$, $\angle 1$ and $\angle 4$, $\angle 2$ and $\angle 3$ are straight angles

Straight angles are supplementary.

Corresponding Angles

Corresponding Angles Are Congruent

Alternate Interior Angles

Alternate Interior Angles Are Congruent

Same-Side Interior Angles

Same-Side Interior Angles Are Supplementary

Area of a Rectangle = $b \cdot h$

Area of a Parallelogram = $b \cdot h$

Area of a Triangle = $\frac{b \cdot h}{2}$

Area of a Trapezoid = $\frac{(b_1+b_2)\cdot h}{2}$

Right Triangle Trigonometry:

$$\sin \theta = \frac{Opposite \ leg}{Hypotenuse}$$

$$\cos \theta = \frac{Adjacent\ leg}{Hypotenuse}$$

$$\tan \theta = \frac{Opposite \ leg}{Adjacent \ leg}$$

Law of Sines (works for AAS & ASA):

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines (works for SAS & SSS):

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cdot cos B$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$

Midpoint Formula:
$$(X_m, Y_m) = (\frac{(x_1 + x_2)}{2}, \frac{(y_1 + y_2)}{2})$$

